Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 109
Filtrar
1.
Exp Mol Pathol ; 132-133: 104867, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37634863

RESUMO

Mast cells (MCs) are tissue-resident innate immune cells that express the high-affinity receptor for immunoglobulin E and are responsible for host defense and an array of diseases related to immune system. We aimed in this study to characterize the pathways and gene signatures of human cord blood-derived MCs (hCBMCs) in comparison to cells originating from CD34- progenitors using next-generation knowledge discovery methods. CD34+ cells were isolated from human umbilical cord blood using magnetic activated cell sorting and differentiated into MCs with rhIL-6 and rhSCF supplementation for 6-8 weeks. The purity of hCBMCs was analyzed by flow cytometry exhibiting the surface markers CD117+CD34-CD45-CD23-FcεR1αdim. Total RNA from hCBMCs and CD34- cells were isolated and hybridized using microarray. Differentially expressed genes were analyzed using iPathway Guide and Pre-Ranked Gene Set Enrichment Analysis. Next-generation knowledge discovery platforms revealed MC-specific gene signatures and molecular pathways enriched in hCBMCs and pertain the immunological response repertoire.


Assuntos
Sangue Fetal , Mastócitos , Humanos , Descoberta do Conhecimento , Antígenos CD34/genética , Diferenciação Celular/genética
2.
Pak J Med Sci ; 39(4): 988-993, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37492288

RESUMO

Background & Objectives: Accurate identification of molecular and toxicological functions of potential drug candidates is crucial for drug discovery and development. This may aid in the evaluation of the risks of genotoxicity and carcinogenesis. In addition, in silico characterization of existing and new drugs might offer clues for future investigations and aid in the development of anticancer treatments. Using next-generation knowledge discovery (NGKD) methodology, we endeavored to establish a risk assessment of anticancer drugs for their molecular mechanism(s) and genotoxicity. Methods: This study was performed at the Faculty of Applied Medical Sciences, King Abdulaziz University (KAU), Jeddah, Saudi Arabia, in November 2022. Using innovative in silico model systems, we assessed the molecular mechanism of action and toxicity of around 20 distinct substances such as Deguelin, Etoposide, Camptothecin, Cytarabine (Ara-C), Cisplatin, Hydroxyurea, Trichostain A, Antimycin, Colchicine, 2-deoxyglucose, Tunicamycin, Thapsigargin, Vinblastin, Docetaxel, Oxaliplatin, Methotrexate, 5-flurouracil, Bleomycin, Taxol (Paclitaxel), and Apicidin. Using the Ingenuity Pathway Analysis (IPA) knowledge base, the number of targets for each compound was determined in silico. Subsequently, they were examined using Fisher's exact test and Benjamini Hochberg Multiple Testing Correction (P<0.05) and submitted to core analysis with IPA to decode the biological and toxicological activities differently controlled by these drugs. In addition, a multiple comparison module in IPA was used to compare the core analyses of each molecule. In addition, we obtained the top 100 protein targets of Etoposide, Camptothecin, and Ara-C using SwissTargetPrediction, as well as the key pathways and gene ontologies affected by these drugs and disease associations using the WebGestalt tool. Results: We identified distinct toxicological signatures and canonical signaling pathways in tumor cell lines regulated by these 20 anticancer drugs. These signaling pathways included cell death and apoptosis in addition to molecular processes, p53 signaling, and aryl hydrocarbon receptor signaling. The TP53 signaling pathway is utilized by these agents to effectively trigger cell death and apoptosis, and p53 functions as a master regulator in a variety of cellular stress responses, including genotoxic stress. Conclusion: Our research has laid the groundwork for the discovery of additional biomarkers that assess both the safety and effectiveness of treatment. Our mechanism based "NGKD" tools have more relevance for the identification of safer therapies and has the potential to lead to the rational screening of drug candidates targeting specific molecular networks and canonical pathways implicated in cancer and genotoxicity. In addition, the combination of protein, microRNA and metabolome profiles may be essential for the development of translatable biomarkers for the safety and efficacy of pharmacotherapeutic agents.Our research has laid the groundwork for the discovery of additional biomarkers that assess both the safety and the effectiveness of a treatment.

4.
Pak J Med Sci ; 39(2): 423-429, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36950431

RESUMO

Objectives: Accurately identifying the cellular, biomolecular, and toxicological functions of anticancer drugs help to decipher the potential risk of genotoxicity and other side effects. Here, we examined bleomycin for cellular, molecular and toxicological mechanisms using next-generation knowledge discovery (NGKD) tools. Methods: This study was conducted at the Faculty of Applied Medical Sciences, King Abdulaziz University (KAU), Jeddah, Saudi Arabia in October 2022. We first analyzed the raw Toxicogenomic and DNA damage-inducing (TGx-DDI) gene expression data from Gene Expression Omnibus (GEO) (GSE196373) of TK6 cells treated with 10 µM bleomycin and TK6 cells treated with DMSO for four hours using the GEO2R tool based on the Linear Models for Microarray Analysis (limma) R packages to derive the differentially expressed genes (DEGs). Then, iPathwayGuide was used to determine differentially regulated signaling pathways, biological processes, cellular, molecular functions and upstream regulators (genes and miRNAs). Results: Bleomycin differently regulates the p53 pathway, transcriptional dysregulation in cancer, FOXO pathway, viral carcinogenesis, and cancer pathways. The biological processes such as p53 class mediator signaling, intrinsic apoptotic signaling, DNA damage response, and DNA damage-induced intrinsic apoptotic signaling and molecular functions like ubiquitin protein transferase and p53 binding were differentially regulated by bleomycin. iPathwayGuide analysis showed that the p53 and its regulatory gene and microRNA networks induced by bleomycin. Conclusion: Analysis of TGx-DDI data of bleomycin using NGKD tools provided information about toxicogenomics and other mechanisms. Integration of all "omics" based approaches is crucial for the development of translatable biomarkers for evaluating anticancer drugs for safety and efficacy.

5.
CNS Neurol Disord Drug Targets ; 22(4): 466-476, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-35466886

RESUMO

Dementia is a complex syndrome of neurological disorders which is associated with cognitive functions of the body. The present review focuses on the role and application of natural products in the treatment of dementia and related diseases. The studies highlight that there exist some potent synthetic/semisynthetic drugs that can effectively target dementia and related diseases. In contrast, despite the existence of a large library of natural products, only a few of them (galantamine, huperzine A, etc.) have been approved as drugs against dementia. This fact is not discouraging because a large number of natural products, including classes of polyphenols, alkaloids, isothiocyanates, phytocannabinoids, and terpenoids, are in the process of drug development stages against dementia and related diseases. It is because they display some promising and diverse biological activities, including antioxidant, acetylcholinesterase inhibitory activity, and anti-amyloidogenic properties, which are significantly associated with the prevention of dementia syndrome. The studies reported in the literature reveal that bioactive natural products particularly target Alzheimer's and Parkinson's diseases by suppressing the risks responsible for dementia. Huperzine A has been identified as a potent natural product against Alzheimer's disease. Despite the efficient role of natural products in preventing dementia, their direct application as drugs is still limited due to some controversial results obtained from their clinical trials; however, bioassay-guided drug development studies can prove them potential drugs against dementia and related diseases. This review provides useful information for researchers, pharmacologists, and medical doctors.


Assuntos
Alcaloides , Doença de Alzheimer , Produtos Biológicos , Humanos , Produtos Biológicos/uso terapêutico , Acetilcolinesterase , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/prevenção & controle , Alcaloides/farmacologia , Alcaloides/uso terapêutico
6.
Medicine (Baltimore) ; 101(45): e31670, 2022 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-36397339

RESUMO

(9;22) (q34; q11) translocation is appear in above ninety percent of chronic myelogenous leukemia patients while variant/complex translocations were observed in almost 5% to 8% chronic myelogenous leukemia (CML) positive cases. Gleevec (Imatinib Mesylate) is the first choice breakpoint cluster region (BCR)/ABL targeted oral therapy that produced a complete response almost in 71% to 80% of patients affected with CML. A complete blood count (CBC) of 37 patients was done during diagnosis, however only 21 showed abnormal CBC values which were selected for the study. Karyotyping study using bone marrow samples was performed on 21 CML patients for the conformation of 9;22, however, fluorescence in situ hybridisation was performed for the detection of the BCR-ABL fusion gene of 15 patients. Out of 21, 17 patients showed Ph-positive (9;22) (q34; q11) translocation. Sixteen CML patients showed standard translocation however only CML patients showed a three-way variant/complex translocation with six additional chromosomes, 52XX, t(1;9;22) (q23.3;q34;q11),+6,+8, i(9)(q10;q10), +18,+19,+21 + der22 t(9;22)(q34;q11)). Here we report we report a novel case of six additional chromosomes with the three-way translocation of 52XX, t(1;9;22) (q23.3;q34;q11),+6,+8, i(9)(q10;q10), +18,+19,+21 + der22 t(9;22)(q34;q11) in blast phase.


Assuntos
Leucemia Mielogênica Crônica BCR-ABL Positiva , Cromossomo Filadélfia , Humanos , Leucemia Mielogênica Crônica BCR-ABL Positiva/tratamento farmacológico , Leucemia Mielogênica Crônica BCR-ABL Positiva/genética , Análise Citogenética , Mesilato de Imatinib/uso terapêutico , Translocação Genética
7.
Medicine (Baltimore) ; 101(35): e29554, 2022 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-36107502

RESUMO

BACKGROUND: Coronavirus (CoV) disease (COVID-19) identified in Wuhan, China, in 2019, is mainly characterized by atypical pneumonia and severe acute respiratory syndrome (SARS) and is caused by SARS CoV-2, which belongs to the Coronaviridae family. Determining the underlying disease mechanisms is central to the identification and development of COVID-19-specific drugs for effective treatment and prevention of human-to-human transmission, disease complications, and deaths. METHODS: Here, next-generation RNA sequencing (RNA Seq) data were obtained using Illumina Next Seq 500 from SARS CoV-infected A549 cells and mock-treated A549 cells from the Gene Expression Omnibus (GEO) (GSE147507), and quality control (QC) was assessed before RNA Seq analysis using CLC Genomics Workbench 20.0. Differentially expressed genes (DEGs) were imported into BioJupies to decipher COVID-19 induced signaling pathways and small molecules derived from chemical synthesis or natural sources to mimic or reverse COVID -19 specific gene signatures. In addition, iPathwayGuide was used to identify COVID-19-specific signaling pathways, as well as drugs and natural products with anti-COVID-19 potential. RESULTS: Here, we identified the potential activation of upstream regulators such as signal transducer and activator of transcription 2 (STAT2), interferon regulatory factor 9 (IRF9), and interferon beta (IFNß), interleukin-1 beta (IL-1ß), and interferon regulatory factor 3 (IRF3). COVID-19 infection activated key infectious disease-specific immune-related signaling pathways such as influenza A, viral protein interaction with cytokine and cytokine receptors, measles, Epstein-Barr virus infection, and IL-17 signaling pathway. Besides, we identified drugs such as prednisolone, methylprednisolone, diclofenac, compound JQ1, and natural products such as Withaferin-A and JinFuKang as candidates for further experimental validation of COVID-19 therapy. CONCLUSIONS: In conclusion, we have used the in silico next-generation knowledge discovery (NGKD) methods to discover COVID-19-associated pathways and specific therapeutics that have the potential to ameliorate the disease pathologies associated with COVID-19.


Assuntos
Produtos Biológicos , Tratamento Farmacológico da COVID-19 , Infecções por Vírus Epstein-Barr , Células A549 , Citocinas/metabolismo , Diclofenaco , Herpesvirus Humano 4/genética , Humanos , Fator Regulador 3 de Interferon/genética , Fator Regulador 3 de Interferon/metabolismo , Fator Gênico 3 Estimulado por Interferon, Subunidade gama/genética , Fator Gênico 3 Estimulado por Interferon, Subunidade gama/metabolismo , Interferon beta , Interleucina-17/metabolismo , Interleucina-1beta/metabolismo , Metilprednisolona , RNA , Receptores de Citocinas/genética , SARS-CoV-2/genética , Fator de Transcrição STAT2 , Análise de Sequência de RNA , Proteínas Virais/genética
8.
Medicine (Baltimore) ; 101(26): e29660, 2022 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-35777011

RESUMO

Severe acute respiratory syndrome (SARS) caused by a novel coronavirus-2 (CoV-2), also known as COVID-19, has spread rapidly worldwide since it is recognized as a public health emergency and has now been declared a pandemic on March 11, 2020, by the World Health Organization. The genome of SARS-CoV-2 comprises a single-stranded positive-sense RNA approximately 27 to 30 kb in size. The virus is transmitted through droplets from humans to humans. Infection with the SARS virus varies from asymptomatic to lethal, such as fever, cough, sore throat, and headache, but in severe cases, pneumonia and acute respiratory distress syndrome. Recently, no specific and effective treatment has been recommended for patients infected with the SARS virus. However, several options can be investigated to control SARS-CoV-2 infection, including monoclonal antibodies, interferons, therapeutic vaccines, and molecular-based targeted drugs. In the current review, we focus on tyrosine kinase inhibitor management and their protective role in SARS-CoV-2 patients with chronic myelogenous leukemia.


Assuntos
Tratamento Farmacológico da COVID-19 , Leucemia Mielogênica Crônica BCR-ABL Positiva , Humanos , Leucemia Mielogênica Crônica BCR-ABL Positiva/tratamento farmacológico , Inibidores de Proteínas Quinases/uso terapêutico , Saúde Pública , SARS-CoV-2
9.
Front Pediatr ; 10: 919996, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35813387

RESUMO

Epilepsy is a neurological disorder described as recurrent seizures mild to severe convulsions along with conscious loss. There are many different genetic anomalies or non-genetic conditions that affect the brain and cause epilepsy. The exact cause of epilepsy is unknown so far. In this study, whole-exome sequencing showed a family having novel missense variant c.1603C>T, p. Arg535Cys in exon 10 of Sodium Voltage-Gated Channel Alpha Subunit 1 (SCN1A) gene. Moreover, targeted Sanger sequencing analysis showed c.1212A>G p.Val404Ile in SCN1A gene in 10 unrelated patients and a mutation in Calcium Voltage-Gated Channel Auxiliary Subunit Beta 4 gene where one base pair insertion of "G" c.78_79insG, p.Asp27Glyfs*26 in the exon 3 in three different patients were observed from the cohort of 25 epileptic sporadic cases. The insertion changes the amino acid sequence leading to a frameshift mutation. Here, we have described, for the first time, three novel mutations that may be associated with epilepsy in the Saudi population. The study not only help us to identify the exact cause of genetic variations causing epilepsy whereas but it would also eventually enable us to establish a database to provide a foundation for understanding the critical genomic regions to control epilepsy in Saudi patients.

10.
Saudi J Biol Sci ; 29(7): 103309, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35663845

RESUMO

Intellectual disability and developmental encephalopathies are mostly linked with infant epilepsy. Epileptic encephalopathy is a term that is used to define association between developmental delay and epilepsy. Mutations in the STXBP1 (Syntaxin-binding protein 1) gene have been previously reported in association with multiple severe early epileptic encephalopathies along with many neurodevelopmental disorders. Among the disorders produced due to any mutations in the STXBP1 gene is developmental and epileptic encephalopathy 4 (OMIM: 612164), is an autosomal dominant neurologic disorder categorized by the onset of tonic seizures in early infancy (usually in the first months of life). In this article, we report two Saudi families one with de novo heterozygous stop-gain mutation c.364C > T and a novel missense c. 305C > A p.Ala102Glu in exon 5 of the STXBP1 gene (OMIM: 602926) lead to development of epileptic encephalopathy 4. The variants identified in the current study broadened the genetic spectrum of STXBP1 gene related with diseases, which will help to add in the literature and benefit to the studies addressing this disease in the future.

11.
Bioengineered ; 13(3): 7049-7064, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35266441

RESUMO

Mast cells are tissue-inhabiting cells that play an important role in inflammatory diseases of the airway tract. Mast cells arise in the bone marrow as progenitor cells and complete their differentiation in tissues exposed to the external environment, such as the skin and respiratory tract, and are among the first to respond to bacterial and parasitic infections. Mast cells express a variety of receptors that enable them to respond to a wide range of stimulants, including the high-affinity FcεRI receptor. Upon initial contact with an antigen, mast cells are sensitized with IgE to recognize the allergen upon further contact. FcεRI-activated mast cells are known to release histamine and proteases that contribute to asthma symptoms. They release a variety of cytokines and lipid mediators that contribute to immune cell accumulation and tissue remodeling in asthma. Mast cell mediators trigger inflammation and also have a protective effect. This review aims to update the existing knowledge on the mediators released by human FcεRI-activated mast cells, and to unravel their pathological and protective roles in asthma and allergy. In addition, we highlight other diseases that arise from mast cell dysfunction, the therapeutic approaches used to address them, and fill the gaps in our current knowledge. Mast cell mediators not only trigger inflammation but may also have a protective effect. Given the differences between human and animal mast cells, this review focuses on the mediators released by human FcεRI-activated mast cells and the role they play in asthma and allergy.


Assuntos
Asma , Hipersensibilidade , Animais , Humanos , Inflamação , Mastócitos/patologia , Receptores de IgE/uso terapêutico
12.
Life (Basel) ; 12(3)2022 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-35330134

RESUMO

Multidrug resistance (MDR) is one of the major therapeutic challenges that limits the efficacy of chemotherapeutic response resulting in poor prognosis of ovarian cancer (OC). The multidrug resistance protein 1 (MRP1) is a membrane-bound ABC transporter involved in cross resistance to many structurally and functionally diverse classes of anticancer drugs including doxorubicin, taxane, and platinum. In this study, we utilize homology modelling and molecular docking analysis to determine the binding affinity and the potential interaction sites of MRP1 with Carboplatin, Gemcitabine, Doxorubicin, Paclitaxel, and Topotecan. We used AutoDock Vina scores to compare the binding affinities of the anticancer drugs against MRP1. Our results depicted Carboplatin < Gemcitabine < Topotecan < Doxorubicin < Paclitaxel as the order of binding affinities. Paclitaxel has shown the highest binding affinity whereas Carboplatin displayed the lowest affinity to MRP1. Interestingly, our data showed that Carboplatin, Paclitaxel, and Topotecan bind specifically to Asn510 residue in the transmembrane domains 1 of the MRP1. Our results suggest that Carboplatin could be an appropriate therapeutic choice against MRP1 in OC as it couples weakly with Carboplatin. Further, our findings also recommend opting Carboplatin with Gemcitabine as a combinatorial chemotherapeutic approach to overcome MDR phenotype associated with recurrent OC.

13.
Front Mol Biosci ; 9: 783735, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35237656

RESUMO

Wnt signalling receptors, Frizzleds (FZDs), play a pivotal role in many cellular events during embryonic development and cancer. Female breast cancer (BC) is currently the worldwide leading incident cancer type that cause 1 in 6 cancer-related death. FZD receptors expression in cancer was shown to be associated with tumour development and patient outcomes including recurrence and survival. FZD6 received little attention for its role in BC and hence we analysed its expression pattern in a Saudi BC cohort to assess its prognostic potential and unravel the impacted signalling pathway. Paraffin blocks from approximately 405 randomly selected BC patients aged between 25 and 70 years old were processed for tissue microarray using an automated tissue arrayer and then subjected to FZD6 immunohistochemistry staining using the Ventana platform. Besides, Ingenuity Pathway Analysis (IPA) knowledgebase was used to decipher the upstream and downstream regulators of FZD6 in BC. TargetScan and miRabel target-prediction databases were used to identify the potential microRNA to regulate FZD6 expression in BC. Results showed that 60% of the BC samples had a low expression pattern while 40% showed a higher expression level. FZD6 expression analysis showed a significant correlation with tumour invasion (p < 0.05), and borderline significance with tumour grade (p = 0.07). FZD6 expression showed a highly significant association with the BC patients' survival outcomes. This was mainly due to the overall patients' cohort where tumours with FZD6 elevated expression showed higher recurrence rates (DFS, p < 0.0001, log-rank) and shorter survival times (DSS, p < 0.02, log-rank). Interestingly, the FZD6 prognostic value was more potent in younger BC patients as compared to those with late onset of the disease. TargetScan microRNA target-prediction analysis and validated by miRabel showed that FZD6 is a potential target for a considerable number of microRNAs expressed in BC. The current study demonstrates a potential prognostic role of FZD6 expression in young BC female patients and provides a better understanding of the involved molecular silencing machinery of the Wnt/FZD6 signalling. Our results should provide a better understanding of FZD6 role in BC by adding more knowledge that should help in BC prevention and theranostics.

14.
Bioengineered ; 13(1): 1666-1685, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34986742

RESUMO

DNA methylation is a process in which methyl (CH3) groups are added to the DNA molecule. The DNA segment does not change in the sequence, but DNA methylation could alter the action of DNA. Different enzymes like DNA methyltransferases (DNMTs) take part in methylation of cytosine/adenine nucleosides in DNA. In prokaryotes, DNA methylation is performed to prevent the attack of phage and also plays a role in the chromosome replication and repair. In fungi, DNA methylation is studied to see the transcriptional changes, as in insects, the DNA methylation is not that well-known, it plays a different role like other organisms. In mammals, the DNA methylation is related to different types of cancers and plays the most important role in the placental development and abnormal DNA methylation connected with diseases like cancer, autoimmune diseases, and rheumatoid arthritis.


Assuntos
Metilação de DNA , DNA/metabolismo , Animais , Bactérias/genética , Bactérias/crescimento & desenvolvimento , Epigênese Genética , Fungos/genética , Fungos/crescimento & desenvolvimento , Predisposição Genética para Doença , Humanos , Insetos/genética , Insetos/crescimento & desenvolvimento , Plantas/genética
15.
Bioengineered ; 13(1): 759-773, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34856849

RESUMO

Nanomedicines are applied as alternative treatments for anticancer agents. For the treatment of cancer, due to the small size in nanometers (nm), specific site targeting can be achieved with the use of nanomedicines, increasing their bioavailability and conferring fewer toxic side effects. Additionally, the use of minute amounts of drugs can lead to cost savings. In addition, nanotechnology is effectively applied in the preparation of such drugs as they are in nm sizes, considered one of the earliest cutoff values for the production of products utilized in nanotechnology. Early concepts described gold nanoshells as one of the successful therapies for cancer and associated diseases where the benefits of nanomedicine include effective active or passive targeting. Common medicines are degraded at a higher rate, whereas the degradation of macromolecules is time-consuming. All of the discussed properties are responsible for executing the physiological behaviors occurring at the following scale, depending on the geometry. Finally, large nanomaterials based on organic, lipid, inorganic, protein, and synthetic polymers have also been utilized to develop novel cancer cures.


Assuntos
Nanoestruturas , Neoplasias , Sistemas de Liberação de Medicamentos , Humanos , Nanomedicina , Nanotecnologia , Neoplasias/tratamento farmacológico
16.
Biology (Basel) ; 10(11)2021 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-34827175

RESUMO

Background: Chronic myeloid leukemia (CML) is initiated in bone marrow due to chromosomal translocation t(9;22) leading to fusion oncogene BCR-ABL. Targeting BCR-ABL by tyrosine kinase inhibitors (TKIs) has changed fatal CML into an almost curable disease. Despite that, TKIs lose their effectiveness due to disease progression. Unfortunately, the mechanism of CML progression is poorly understood and common biomarkers for CML progression are unavailable. This study was conducted to find novel biomarkers of CML progression by employing whole-exome sequencing (WES). Materials and Methods: WES of accelerated phase (AP) and blast crisis (BC) CML patients was carried out, with chronic-phase CML (CP-CML) patients as control. After DNA library preparation and exome enrichment, clustering and sequencing were carried out using Illumina platforms. Statistical analysis was carried out using SAS/STAT software version 9.4, and R package was employed to find mutations shared exclusively by all AP-/BC-CML patients. Confirmation of mutations was carried out using Sanger sequencing and protein structure modeling using I-TASSER followed by mutant generation and visualization using PyMOL. Results: Three novel genes (ANKRD36, ANKRD36B and PRSS3) were mutated exclusively in all AP-/BC-CML patients. Only ANKRD36 gene mutations (c.1183_1184 delGC and c.1187_1185 dupTT) were confirmed by Sanger sequencing. Protein modeling studies showed that mutations induce structural changes in ANKRD36 protein. Conclusions: Our studies show that ANKRD36 is a potential common biomarker and drug target of early CML progression. ANKRD36 is yet uncharacterized in humans. It has the highest expression in bone marrow, specifically myeloid cells. We recommend carrying out further studies to explore the role of ANKRD36 in the biology and progression of CML.

17.
Saudi J Biol Sci ; 28(11): 6045-6049, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34764737

RESUMO

Colorectal cancer (CRC) is one of the leading causes of death in Saudi Arabia. CRC mostly affects older age groups, but now a days it also appears frequently at a young age. However, the complete genetic etiology of CRC remains unknown. To identify the genetic factors responsible for this cancer type and to search for biomarkers for early diagnosis and prevention, we collected sixteen CRC tumor tissue samples and six normal colon tissues and extracted mRNA and synthesized cDNA. We then performed microarray transcriptomic profiling of Saudi patients with colon cancer. Gene expression was analyzed using Partek Genomics Suite, and principal component analysis (PCA) was performed to separate the different clusters of colon cancer and healthy tissues. Distinct differences in gene expression profiles were observed between colon cancer and normal tissue samples. Subsequently, we validated gene expression using real-time PCR. We found that the C-X-C motif chemokine ligand 8 (CXCL8) gene was expressed most in CRC samples. CXCL8 expressed 25.6 folds more in CRC tissues than in healthy tissues. In conclusion, we found that CXCL8 is the chief biomarker gene that is expressed most in CRC and plays an important role in tumor progression and metastasis.

18.
Saudi J Biol Sci ; 28(10): 5906-5912, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34588906

RESUMO

Colorectal cancer (CRC) is one of the topmost causes of death in males in Saudi Arabia. In females, it was also within the top five cancer types. CRC is heterogeneous in terms of pathogenicity and molecular genetic pathways. It is very important to determine the genetic causes of CRC in the Saudi population. BRAF is one of the major genes involved in cancers, it participates in transmitting chemical signals from outside the cells into the nucleus of the cells and it is also shown to participate in cell growth. In this study, we mapped the spectrum of BRAF mutations in 100 Saudi patients with CRC. We collected tissue samples from colorectal cancer patients, sequenced the BRAF gene to identify gene alterations, and analyzed the data using different bioinformatics tools. We designed a three-dimensional (3D) homology model of the BRAF protein using the Swiss Model automated homology modeling platform to study the structural impact of these mutations using the Missense3D algorithm. We found six mutations in 14 patients with CRC. Four of these mutations are being reported for the first time. The novel frameshift mutations observed in CRC patients, such as c.1758delA (E586E), c.1826insT (Q609L), c.1860insA and c.1860insA/C (M620I), led to truncated proteins of 589, 610, and 629 amino acids, respectively, and potentially affected the structure and the normal functions of BRAF. These findings provide insights into the molecular etiology of CRC in general and to the Saudi population. BRAF genetic testing may also guide treatment modalities, and the treatment may be optimized based on personalized gene variations.

19.
Anal Cell Pathol (Amst) ; 2021: 4909012, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34422550

RESUMO

Chronic myeloid leukemia (CML) is a disease of hematopoietic stem cells and is caused by the balanced translocations among the long arms of chromosomes 9 and 22, which are called the Philadelphia (Ph) chromosome. In this study, 131 CML patients were enrolled. Complete blood cell count was performed at the time of diagnosis for all the patients. Cytogenetic (karyotyping) examination using bone marrow samples was conducted on 76 CML patients for the confirmation of Ph-positive (9;22)(q34;q11) standard translocation, complex variant translocation, and additional chromosome abnormalities. FISH was performed on 38 patients for diagnostic purposes and on 39 patients for monitoring purposes. Twenty-two samples of CML patients were evaluated by reverse transcriptase PCR and real-time PCR for the patients who failed to respond against imatinib mesylate. In this study, 72 (54.96%) were males and 59 (45.03%) were females with a median age of 38.5 years. CBC values in the diagnosis process showed that 75 patients had high values of WBC being >100 × 103/µl, while 71 (58.01) patients exhibited reduced values of hemoglobin, i.e., <10.00 mg/dl, and high values of PLTs > 100 were observed in 40 (30.53%) patients. Cytogenetic results show that standard translocation was developed in 63 (82.89%), development of complex variant translocations in 4 (5.32%), additional chromosomal abnormalities (ACAs) in 3 (3.94%), and ACAs together with complex variant translocations in 1 (1.31%) patient. At the time of diagnosis, 61 (92.95%) patients were in the chronic phase, 4 (5.63%) were in the accelerated phase, and only 1 (1.40%) was in the blast crisis. Out of twenty-two patients, only 6 CML patients who were shifted from imatinib mesylate to nilotinib showed BCR-ABL-positive amplification. However, only 7 out of twenty-one patients exhibit BCR-ABL gene values ≥ 1 after three months of follow-up when analyzed by the quantitative real-time PCR. In conclusion, we found a novel five-way translocation 46XX,t(1;2;2;17;9;22)(p36.3,q21;q11.2,q21,q34,q11.2) and a novel four-way complex variant translocation 48XY,+8(8;17)(9;22),+der(22)(q11.2;q23)(q34;q11.2) in the accelerated phase.


Assuntos
Biomarcadores Tumorais/genética , Leucemia Mielogênica Crônica BCR-ABL Positiva/genética , Cromossomo Filadélfia , Translocação Genética , Adolescente , Adulto , Antineoplásicos/uso terapêutico , Substituição de Medicamentos , Feminino , Humanos , Mesilato de Imatinib/uso terapêutico , Hibridização in Situ Fluorescente , Cariotipagem , Leucemia Mielogênica Crônica BCR-ABL Positiva/sangue , Leucemia Mielogênica Crônica BCR-ABL Positiva/tratamento farmacológico , Masculino , Pessoa de Meia-Idade , Inibidores de Proteínas Quinases/uso terapêutico , Pirimidinas/uso terapêutico , Resultado do Tratamento , Adulto Jovem
20.
Bioengineered ; 12(1): 5099-5109, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34369256

RESUMO

Colorectal cancer (CRC) is one of the most important causes of morbidity and mortality in the developed world and is gradually more frequent in the developing world including Saudi Arabia. According to the Saudi Cancer Registry report 2015, CRC is the most common cancer in men (14.9%) and the second most prevalent cancer. Oncogenic mutations in the KRAS gene play a central role in tumorigenesis and are mutated in 30-40% of all CRC patients. To explore the prevalence of KRAS gene mutations in the Saudi population, we collected 80 CRC tumor tissues and sequenced the KRAS gene using automated sequencing technologies. The chromatograms presented mutations in 26 patients (32.5%) in four different codons, that is, 12, 13, 17, and 31. Most of the mutations were identified in codon 12 in 16 patients (61.5% of all mutations). We identified a novel mutation c.51 G>A in codon 17, where serine was substituted by arginine (S17R) in four patients. We also identified a very rare mutation, c.91 G>A, in which glutamic acid was replaced by lysine (E31K) in three patients. In conclusion, our findings further the knowledge about KRAS mutations in different ethnic groups is indispensable to fully understand their role in the development and progression of CRC.


Assuntos
Neoplasias Colorretais/genética , Mutação/genética , Proteínas Proto-Oncogênicas p21(ras) , Adulto , Idoso , Idoso de 80 Anos ou mais , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Modelos Moleculares , Proteínas Proto-Oncogênicas p21(ras)/química , Proteínas Proto-Oncogênicas p21(ras)/genética , Arábia Saudita , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA